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Abstract

Gliomas remain a major challenge in brain cancer treatment. Although genetic mutations have been widely studied, recent re-
search indicates that epigenetic changes, which alter gene activity without changing the DNA sequence, also contribute signifi-
cantly to tumor growth and treatment resistance. This review seeks to elucidate the principal drivers and modulators of brain
tumor development, emphasizing the complex interaction between tumor metabolism and epigenetic regulation. It highlights
how metabolic intermediates influence chromatin structure and transcriptional events driving glioma progression. Metabolic
intermediates, such as acetyl-CoA and S-adenosylmethionine, serve as essential epigenetic cofactors, directly impacting chroma-
tin structure and gene expression. Additionally, metabolic disorders like diabetes not only frequently coexist with gliomas but
also exacerbate tumor progression through mechanisms such as inflammation, oxidative stress, and epigenetic reprogramming.
Tumors located near brain regions controlling heart function may also increase the risk of sudden death, particularly in diabetic
patients. The review proposes a comprehensive framework to understand glioma development by linking metabolism, epigenet-
ics, and overall health. This integrated perspective leads to novel personalized treatment approaches, targeting both the tumor
and the patient’s broader metabolic health, with the potential to improve survival rates and quality of life for glioma patients.

Introduction

According to the 2021 World Health Organization Classifica-
tion of Central Nervous System (CNS) Tumors, brain tumors are
mainly grouped into several primary categories.! These categories
consist of gliomas, glioneuronal tumors (which can be either dif-
fuse or circumscribed), ependymomas, and choroid plexus tumors.
Another separate category includes embryonal tumors, such as
medulloblastomas and atypical teratoid/rhabdoid tumors. Addi-
tional categories encompass pineal tumors, tumors of cranial and
paraspinal nerves, meningiomas, mesenchymal tumors, melano-
cytic and hematolymphoid tumors, germ cell tumors, tumors in the
sellar region, and metastatic tumors affecting the CNS. Gliomas
are the most frequently diagnosed types of primary brain tumors.
They vary in aggressiveness, ranging from slow-growing astrocy-
tomas to the more aggressive glioblastoma multiforme (GBM),
also known as glioblastoma, isocitrate dehydrogenase wild type. In
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contrast, meningiomas, which arise from the protective covering
of the brain, are typically benign; however, some may display ma-
lignant features.?? Medulloblastomas primarily occur in children
and present considerable treatment challenges. The prognosis de-
pends on the type, location, and molecular properties of the tumor.*

Despite advancements in neurosurgery, radiotherapy, and tar-
geted therapies, managing high-grade gliomas, medulloblastomas,
and atypical teratoid/rhabdoid tumors remains difficult.5¢ Numer-
ous brain tumor survivors face significant neurological impair-
ments, seizures, and cognitive obstacles, highlighting the need for
innovative approaches to improve these outcomes and mitigate
long-term effects.”® Nevertheless, researchers can only create new
treatments by enhancing their comprehension of the molecular
and epigenetic variations in brain tumors.®!? This approach may
uncover novel treatment targets and enhance the outlook for sur-
vivors. Scientists widely recognize that epigenetics, defined as
heritable modifications in gene expression without changes to the
DNA sequence, drives tumor initiation, progression, metastasis,
and resistance to therapies.

The four primary epigenetic mechanisms that control gene
expression and cellular activity include DNA methylation, modi-
fications of histones, chromatin remodeling processes, and non-
coding RNAs (ncRNAs)."""13 Trregularities in epigenetic regula-
tion contribute to tumor formation and treatment resistance.!* For
example, the methylation pattern of the O6-methylguanine-DNA
methyltransferase (MGMT) promoter serves as a crucial predic-
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tive biomarker for the response of glioblastoma to alkylating chem-
otherapy.'>'® MGMT plays a vital role in repairing DNA damage
caused by alkylating agents, such as temozolomide, by removing
alkyl groups from the O6 position of guanine.!” Therefore, the sta-
tus of MGMT methylation is a key aspect in evaluating treatment
effectiveness, indicating the importance of epigenetic changes in
cancer therapy. Similarly, changes in chromatin remodelers, such as
those affecting the SWItch/Sucrose Non-Fermentable (SWI/SNF)
complex, can alter chromatin accessibility, which may lead to more
aggressive tumors.!%1? In addition to these modifications concerning
DNA and histones, ncRNAs also impact the tumor microenviron-
ment (TME), microRNAs (miRNAs) such as miR-21 and miR-10b
promote tumor growth and invasion, while the tumor-suppressive
long non-coding RNA (IncRNA) maternally expressed gene 3 is
frequently silenced, contributing to uncontrolled tumor growth.2%-!
Deciphering these intricate epigenetic networks opens new path-
ways for precision medicine, where targeted treatments aim to in-
tervene with crucial epigenetic regulators. By integrating epigenetic
insights into treatment protocols, scientists can refine therapeutic
approaches, enhance patient outcomes, and ultimately address the
persistent challenges in managing brain tumors.?>?3

Gliomas, meningiomas, and metastatic brain tumors are among
the most common types of brain tumors. However, this review
specifically focuses on gliomas, which will be the manuscript’s
primary subject. This review is structured around a cohesive
framework that investigates how epigenetic dysregulation, meta-
bolic alterations, and neurocardiovascular signaling are interre-
lated in influencing the biology and clinical outcomes of gliomas.
The first aim is to gather the latest information on the epigenetic
landscape of brain tumors, highlighting critical regulatory mecha-
nisms, their interactions with tumor metabolism, and their impor-
tance for treatment responses and disease progression, especially
concerning glioblastoma. The second aim is to identify the meta-
bolic-epigenetic feedback loops that exist in gliomas, emphasizing
that metabolic reprogramming is an acknowledged feature across
all cancers and discussing evidence that systemic factors, such as
diabetes, may worsen these pathways and promote glioma devel-
opment. The final aim is to integrate emerging findings on how
epigenetic changes associated with gliomas might be linked to
dysfunction within the brain-heart axis, an increasingly important
area in neurocardiology, and to examine how these interconnected
mechanisms may contribute to the increased cardiovascular mor-
tality observed in glioma patients. Essentially, this review presents
a conceptual framework designed to direct future research towards
targeted, mechanism-driven, personalized treatment approaches
for gliomas. In this regard, the review discusses the key epige-
netic pathways implicated in brain tumor development and their
connections to metabolic reprogramming within these tumors.
Furthermore, this framework relates to cardiovascular disease by
underlining common factors such as oxidative stress, mitochon-
drial dysfunction, and inflammation. The review concludes with
clinical and translational perspectives on biomarker development,
therapeutic strategies, and future opportunities at the intersection
of epigenetics, metabolism, oncology, and cardiovascular health.

Epigenetic mechanisms driving brain tumors

Epigenetic regulation plays a crucial role in the formation and pro-
gression of brain tumors, as it influences the key pathways vital for
tumor growth and resistance to therapies. The primary epigenetic
factors contributing to brain tumors can be divided into four es-
sential mechanisms: DNA methylation, modifications of histones,

Chakrabarti S.K. et al: Epitherapeutics in gliomas

chromatin remodeling, and ncRNA. Each of these mechanisms
will be discussed in detail in the corresponding sections of the ar-
ticle as it unfolds.

DNA methylation: Balancing gene silencing and activation in
brain tumors

DNA methylation serves as a crucial epigenetic modification that
plays a significant role in the formation of brain tumors.?**> DNA
methyltransferases (DNMTs) add methyl groups to cytosine within
cytosine-phosphate-guanine dinucleotides, affecting the epigenet-
ic landscape of brain tumors. The methylation patterns in brain
tumors frequently alter, resulting in either gene silencing or inap-
propriate gene activation, which aids in tumor proliferation and re-
sistance to therapy.?4-2¢ Numerous brain tumors, including gliomas
and GBM, exhibit hypermethylation of tumor suppressor genes
(TSGs) alongside global hypomethylation, contributing to genom-
ic instability.?”?® Four primary DNMTs regulate these epigenetic
alterations, each possessing unique but interconnected roles. The
primary maintenance methyltransferase, DNMT1, preserves DNA
methylation patterns during cell division, ensuring that epigenetic
modifications are inherited and stable in daughter cells, which can
silence crucial regulatory genes.?3? DNMT3A introduces new
methylation signatures throughout development; however, its dys-
regulation in brain tumors leads to abnormal patterns that promote
cancer progression.3!*2 DNMT3B further enhances tumor growth
by silencing apoptotic pathways and tumor-suppressor mecha-
nisms.*3-* While DNMT3L does not have enzymatic activity, it
regulates DNMT3A and DNMT3B, influencing the epigenetics of
brain tumors.333¢ The collective activities of these DNMTs result
in a complex array of methylation changes that facilitate tumor
growth, immune evasion, and resistance to treatment, suggesting
that they could be viable targets for epigenetic-based therapies
aimed at brain tumors.3”*8 The following section provides a de-
tailed analysis of their roles concerning brain tumors.

DNMT dysregulation: The hidden driver of brain tumor aggres-
sion and resistance

The silencing of TSGs through the dysregulation of DNMTs in
brain tumors is one of the most extensively documented effects. In
gliomas, DNMT1 and DNMT?3B influence phosphatase and tensin
homolog deleted on chromosome 10 via promoter methylation,
which enhances cell survival and proliferation by inhibiting the
phosphoinositide 3-kinase/protein kinase B signaling pathway.3#0
Likewise, the methylation of retinoblastoma transcriptional core-
pressor 1 and cyclin-dependent kinase inhibitor 2A/B by DNMT3B
disrupts cell cycle regulatory checkpoints in high-grade gliomas
and medulloblastomas, facilitating tumor growth.*!-#3 Extensive
studies reveal a prevalent occurrence of promoter hypermethyla-
tion in GBM, particularly in genes involved in DNA repair, apop-
tosis, and tumor suppression, indicating the importance of DNMTs
in tumor progression.*+*5 Conversely, hypomethylation promotes
tumor aggressiveness by enhancing the expression of oncogenes
and increasing genomic instability. Research indicates that hypo-
methylation by DNMT]1 of long interspersed nuclear element-1
and Alu elements in GBM leads to chromosomal rearrangements
and amplifications that support tumor evolution.***” Genome-wide
profiling of methylation indicates that hypomethylation correlates
with higher tumor grades and poorer prognoses, highlighting the
role of DNMT regulation in tumor biology.*® While alterations in
DNMTs are uncommon in primary glioblastomas, mutations in
DNMT3A are frequently observed in pediatric gliomas and medul-
loblastomas, often in conjunction with histone H3 lysine (H3K) 27
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to methionine mutation.*>5° This disruption of typical epigenetic
mechanisms fosters a stem-like phenotype in tumors.5! The simul-
taneous loss of H3K27 trimethylation alongside DNMT3A dys-
function propels the development of the most aggressive diffuse
midline gliomas.5>5 Single-cell analyses affirm that these epige-
netic modifications contribute to tumor resilience and recurrence
by preserving undifferentiated glioma stem-like cells.5#55

The epigenetic shield of therapy-resistant glioma stem cells

GBM contains a subset of glioma stem-like cells, which are crucial
in contributing to resistance against therapy and tumor recurrence.
DNMT enzymes are essential for preserving the self-renewal ca-
pabilities of these cells.5%57 There is an increased expression of
DNMT3B in glioma stem-like cells, which methylates important
differentiation genes, thereby sustaining their stem-like character-
istics.35% Research models indicate that blocking DNMT1 and
DNMT3B promotes glioma cell differentiation, decreases tumor
growth, and increases their response to conventional treatments,
showing significant therapeutic potential.®%¢! DNMTs also have
various intrinsic and extrinsic effects on tumors, as they are not
simply drivers of tumor-intrinsic changes but also actively shape
the TME, especially by subverting immune surveillance, creating
an immunosuppressive niche, and reducing tumor immunogenic-
ity. Targeting DNMTs can thus have dual benefits, including the
restoration of tumor suppressor activity and the reactivation of
anti-tumor immunity.62:63

DNMTs: The epigenetic architects of immune evasion and
glioma survival

Aberrant methylation driven by DNMT1 and DNMT3B in GBM
aids tumors in evading immune detection by silencing genes re-
sponsible for antigen presentation and enhancing PD-L1 levels,
a crucial immune checkpoint protein.®*%5 Additionally, these
DNMTs recruit myeloid-derived suppressor cells, creating an im-
munosuppressive environment that obstructs anti-tumor immune
responses.®*06:67 Recent research emphasizes the role of DNMT-
driven methylation patterns in gliomas and their influence on
immune cell infiltration, highlighting the significance of epige-
netic regulation in tumor-immune interactions.®®%° In summary,
DNMTI1, DNMT3A, and DNMT3B facilitate the advancement of
brain tumors by silencing TSGs, preserving genomic stability, sup-
porting glioma stem cells, and influencing immune responses. On-
going research will continue to illuminate the intriguing epigenetic
mechanisms governed by DNMTs, thereby paving the way for
more effective and targeted treatments for aggressive brain tumors.

Histone modifications: The hidden drivers of brain tumor
progression

Post-translational modifications of histones serve as crucial regu-
lators of gene expression, greatly impacting cellular activities and
playing an integral role in the development of brain tumors.”%7!
Histones are protein structures that wrap around DNA and can
undergo various chemical alterations, including acetylation, meth-
ylation (mono-, di-, and tri-methylation), phosphorylation, ubiqui-
tination, sumoylation, lactylation, serotonylation, and crotonyla-
tion.”>73 These post-translational modifications of histones lead to
changes in the structure of histones, modifying chromatin organi-
zation and influencing the accessibility of DNA for transcription.
The enzymes that alter histones during the formation of brain tu-
mors create conditions that either encourage or inhibit the expres-
sion of genes involved in cell growth, differentiation, and surviv-
al.7+75 Together, these modifications comprise a complex “histone
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code” that is recognized by chromatin remodeling complexes and
transcription factors, which is vital in regulating gene expression
during tumor development.”®’7 When histone modifications are
disrupted, they can interfere with normal cellular processes, acti-
vate oncogenes, or silence TSGs, contributing to the excessive cell
growth observed in brain tumors. At certain locations in the ge-
nome, these modifications influence gene regulation in ways that
lead to essential cancer characteristics, such as bypassing growth
control, resisting apoptosis, maintaining growth signals, and modi-
fying metabolism.”®7° Gaining insights into these modifications is
vital for brain tumor research, as it may reveal new mechanisms
underlying tumor progression and help identify possible treatment
approaches targeting these alterations.

Modifications in histones are crucial for the regulation of genes
and the structure of chromatin, affecting functions such as the
cell cycle and DNA repair. In brain cancers like GBM and glio-
mas, irregular histone modifications can promote tumor growth
and enhance malignancy.?"8! The process of histone acetylation,
which is influenced by acetyltransferases and histone deacetylases
(HDACS), is essential for gene expression. Elevated activity of
HDAC: in gliomas is linked to poorer outcomes, whereas HDAC
inhibitors, such as vorinostat and panobinostat, have shown po-
tential in preclinical investigations by facilitating cell differentia-
tion and inhibiting tumor growth.32-84 Methylation of histones,
especially at H3K27 and H3K09, is another critical factor in the
advancement of gliomas.3386 Mutations in isocitrate dehydroge-
nase 1 and 2 lead to increased levels of 2-hydroxyglutarate, which
inhibits HDACs, alters chromatin structure, and promotes tumor
progression.37:88 The phosphorylation of histones, including his-
tone H3 serine 10 and H2A histone family member X, also plays
a role in glioma development.®® A rise in histone H3 serine 10
phosphorylation in GBM is associated with more aggressive tu-
mor behavior and poorer prognosis, while higher levels of y-H2A
histone family member X, an indicator of DNA damage, reflect
a compromised DNA damage response that aids tumor cells in
surviving treatments.’®*! Ubiquitination of histones, for instance,
monoubiquitination of histone H2A at lysine 119 and monoubiq-
uitination of histone H2B at lysine 120, is significant in chromatin
dynamics and transcription regulation.®>%3 Mutations in Polycomb
repressive complex 1, which is responsible for the ubiquitination
of histone H2A at lysine 119, are essential for TSG silencing in
gliomas, playing a part in the oncogenic process.**5 Likewise,
the ubiquitination of histone H2B lysine 120 is implicated in the
process of transcription elongation, further propelling GBM pro-
gression. %97

Furthermore, histone sumoylation on histone H4 is generally
associated with transcriptional repression through the recruitment
of corepressor complexes. Rather than directly compacting chro-
matin,’® its regulatory effects mainly involve modulating chroma-
tin-associated proteins. In contrast, chromatin decondenzation and
gene activation are primarily linked to H4K16 acetylation,” and
dysregulation of these marks may contribute to tumor progression.
A newer modification, lactylation, occurs when lactate is incor-
porated into histones, connecting it to the metabolic adaptation of
tumor cells.!%191 [n GBM, elevated lactate levels resulting from
aerobic glycolysis facilitate histone lactylation, aiding the expres-
sion of genes that promote growth and survival in low-oxygen
environments.!%193 Another novel modification, serotonylation,
entails the addition of serotonin to histones, impacting gene regu-
lation and chromatin configuration.! In brain tumors, seroto-
nylation might influence mechanisms such as neurotransmitter
signaling and interactions within the TME, although its function
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in gliomas is still being explored.!?51% Finally, crotonylation,
linked to butyric acid metabolism, is characterized by the addi-
tion of a crotonyl group to histones, facilitating gene activation and
the relaxation of chromatin.!’ Increased crotonylation at H3K18
in GBM promotes the expression of oncogenic genes, driving tu-
mor progression and immune evasion.'%%19 The combination of
these histone modifications is essential for chromatin remodeling
and gene expression, positioning them at the heart of brain tumor
biology. As studies progress, these modifications could uncover
new therapeutic targets, paving the way for epigenetic treatments
designed to reverse abnormal chromatin alterations and more ef-
fectively fight brain tumors.

The role of chromatin remodeling complexes in brain tumors

Brain cancers result from intricate genetic and epigenetic altera-
tions that contribute to their development, proliferation, and re-
sistance to treatment. Among the various epigenetic regulators,
chromatin remodelers are crucial, as they manage chromatin ac-
cessibility and gene expression.!!? These complexes rearrange
nucleosomes, affecting transcription, DNA repair, and replica-
tion processes.!!! When they become dysregulated, they can trig-
ger oncogenic pathways or silence TSGs, altering normal gene
regulation. Families such as SWI/SNF, Imitation SWltch (ISWI),
chromodomain helicase DNA-binding protein (CHD), and inosi-
tol requiring 80 (INO80) have surfaced as significant contribu-
tors to brain tumor biology, functioning as either facilitators or
inhibitors of malignancy.!"?!3 The ISWI chromatin remodeling
family, which includes SWI/SNF-related, matrix-associated ac-
tin-dependent regulator of chromatin, subfamily A (SMARCA),
member 1, also known as SNF2L, and SMARCAS, also known
as SNF2H, is involved in regulating nucleosome positioning
and gene suppression.!'*115 Dysregulation of these components
in GBM and medulloblastoma disrupts DNA repair mechanisms
and the cell cycle, fostering tumor growth.!'%117 Elevated levels
of SMARCAS further enhance GBM cell growth and contribute
to resistance against radiation therapy, underscoring its signifi-
cance in therapeutic resistance.'®1" Focusing on SMARCAS5 can
enhance the sensitivity of tumors to radiation, indicating its po-
tential as a target for therapy. In medulloblastoma, dysfunction
of ISWI modifies chromatin structure, allowing cells to remain
undifferentiated and fueling tumor development, highlighting
the significance of chromatin remodeling in supporting cellular
identity.12%-121 CHD4, part of the CHD family, suppresses gene
expression by compacting chromatin within the nucleosome re-
modeling and deacetylase complex.'?%!23 In gliomas, increased
levels of CHD4 contribute to malignancy by silencing differentia-
tion genes and promoting self-renewal of GBM stem cells. 24125
Research using clustered regularly interspaced short palindromic
repeats-associated protein 9 has pinpointed CHD4 as a weakness
in GBM stem-like cells, where its inhibition slows tumor growth
and induces differentiation.!?® This indicates that CHD4 is crucial
not only for sustaining tumors but also for driving GBM plastic-
ity, making it a promising target for therapy. The INO80 com-
plex plays a critical role in genomic stability by repairing DNA
damage, controlling replication stress, and regulating transcrip-
tion.!2” Although INO80 is known to support oncogenic programs
in several cancers, direct evidence that its function is co-opted
in glioblastoma to induce genomic instability and promote tumor
growth or therapy resistance remains limited and warrants fur-
ther investigation.!?$12% Evidence suggests that knocking down
INOS8O disrupts DNA repair, diminishing the survival of glioblas-
toma cells. 130131
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Furthermore, blocking INOSO increases the effectiveness of
temozolomide treatment, indicating it might serve as a valuable
target for enhancing GBM therapy.!3%133 The connection between
chromatin remodeling complexes and brain tumor formation
makes them significant biomarkers and potential therapeutic tar-
gets. Expanding our knowledge of how various remodeling fami-
lies interact could provide new insights into tumor development,
differentiation, and response to treatment. Targeting these chro-
matin-related mechanisms may lead to advancements in precision
oncology, where targeted modulators can help overcome therapy
resistance and enhance patient outcomes.

ncRNAs: Epigenetic architects of brain tumor progression

ncRNAs, which encompass miRNAs, IncRNAs, and circular RNAs
(circRNAs), play vital roles in regulating gene expression within
the molecular pathology of brain tumors, especially GBM.!34135
miRNAs, which are small single-stranded RNAs approximately 22
nucleotides in length, control gene expression after transcription
by binding to particular messenger RNAs, resulting in either trans-
lational repression or degradation.!3¢-138 The alteration of miRNA
expression is associated with various diseases, including brain can-
cer. For example, in GBM, miR-21 is elevated and targets TSGs
like phosphatase and tensin homolog deleted on chromosome 10
and programmed cell death 4, thereby promoting processes such as
cell proliferation, invasion, and resistance to apoptosis.'3%140 Pre-
clinical models indicate that inhibiting miR-21 can improve the ef-
ficacy of chemotherapy agents like taxol in GBM cell lines, while
in vivo studies have shown that reducing miR-21 expression stifles
tumor growth and boosts apoptosis, making miR-21 a promising
candidate for therapeutic approaches aimed at enhancing tumor
sensitivity to standard treatments.'41-142

The well-established tumor suppressor miR-34a is usually
found at lower levels in high-grade gliomas, which induces tumor
progression by enhancing the Notch signaling pathway that sus-
tains glioma stemness and contributes to therapy resistance.!43:144
Importantly, the MRX34 Phase I trial, which was examining a
miR-34a mimic in patients with advanced solid tumors, includ-
ing GBM, was discontinued due to severe immune-related adverse
events, resulting in patient fatalities.'#5 Nonetheless, preclinical
studies have shown that using nanoparticles to deliver miR-34a
can help overcome resistance to the chemotherapeutic agent te-
mozolomide in GBM, underscoring its potential as a therapeutic
option despite issues related to immune toxicity and delivery tech-
niques.'® Ongoing human clinical trials are assessing miR-34a
mimics in combination with various treatment regimens, incorpo-
rating stricter safety protocols to mitigate earlier concerns.

In addition to miRNAs, IncRNAs and circRNAs play crucial
roles in glioma progression. The IncRNA HOX transcript antisense
intergenic RNA (HOTAIR) promotes the development of glioma
by engaging with the Polycomb repressive complex 2, resulting
in the epigenetic silencing of TSGs.'47-14% Elevated levels of HO-
TAIR help sustain characteristics associated with glioblastoma
stem cells and contribute to resistance against chemotherapy and
radiation; hence, HOTAIR is a promising target for therapeutic
approaches designed to counteract these effects.!3%151 A phase 1
trial is currently examining a strategy that targets HOTAIR using
small-molecule inhibitors to interrupt its function, and initial find-
ings indicate encouraging responses in glioma patients who have
undergone prior treatments.'! Likewise, circFBXW7 serves as a
molecular sponge, meaning it interacts with and inhibits glioma-
related miRNAs such as miR-223, impacting crucial signaling
pathways tied to the stemness and growth of glioma cells.!52153
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Table 1. Summary of key epigenetic mechanisms, dysregulated components, and pro-tumorigenic effects in glioma

Silencing of tumor suppressor genes (TSGs) such as PTEN, RB1, and CDKN2A/B; genomic in-
stability through hypomethylation (e.g., LINE-1, Alu elements); and enhanced cell survival,

Inhibition of apoptosis (e.g., silencing of apoptotic genes), promotion of cancer progression
(e.g., silencing of TSGs like PTEN and RB1), and increased genomic instability (e.g., LINE-1 and

Activation of oncogenes (e.g., through acetylation and phosphorylation), silencing of tumor
suppressor genes (e.g., through methylation and ubiquitination), chromatin remodeling that
promotes tumor growth and survival, and immune evasion mediated through lactylation and

Disruption of DNA repair mechanisms (e.g., INO80, SWI/SNF, ISWI), altered cell cycle regula-
tion (e.g., SMARCAS, ISWI), enhanced tumor growth and therapeutic resistance (e.g., SMAR-
CA5), and increased tumor stemness and plasticity (e.g., CHD4, SMARCA5)169:170

Promotion of tumor proliferation and invasion (e.g., miR-21, HOTAIR), maintenance of glioma
stem cell characteristics (e.g., miR-34a, HOTAIR), and resistance to chemotherapy and radia-

Silencing of antigen presentation genes (e.g., through DNMT1, DNMT3B), increased PD-L1

Eplgeneync T Pro-tumorigenic effects
mechanism lated component
DNA meth- DNMT1, DN-
ylation MT3A, DNMT3B
proliferation, and resistance to therapy64165
DNMT dys- DNMT1, DN-
regulation MT3A, DNMT3B
Alu hypomethylation)64-166

Histone HDACs, HATs, H3K27,
modifica- H3K9, H2AK119ub,
tions H2BK120ub, H4K16,

lactylation, crotonylation  crotonylation67:168
Chromatin SWI/SNF (SMARCA1,
remodeling  SMARCAS), ISWI,

CHD4, INO80
Non-coding  miR-21, miR-34a,
RNAs HOTAIR, circFBXW
(ncRNAs) tion (e.g., miR-21, miR-34a)'7*
Immune DNMT1, DNMT3B,
evasion PD-L1, MDSCs

expression (e.g., through DNMT-driven methylation), recruitment of MDSCs, and suppression
of anti-tumor immune responses, fostering immune evasion'7%173

Alu, Alu repeat elements; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; CHD4, chromodomain helicase DNA-binding protein 4; circFBXW?7, circular FBXW7 RNA; DNMT, DNA
methyltransferase 1; DNMT3A, DNA methyltransferase 3A; DNMT3B, DNA methyltransferase 3B; H2AK119ub, monoubiquitination of histone H2A lysine 119; H2BK120ub, mon-
oubiquitination of histone H2B lysine 120; H3K27, histone H3 lysine 27; H3K9, histone H3 lysine 9; H4K16, histone H4 lysine 16; HATs, histone acetyltransferases; HDACs, histone
deacetylases; HOTAIR, HOX transcript antisense intergenic RNA; INO8O, inositol requiring 80 complex; ISWI, Imitation SWltch; LINE-1, long interspersed nuclear element-1; MDSCs,
myeloid-derived suppressor cells; ncRNAs, non-coding RNAs; PD-L1, programmed death-ligand 1; PTEN, phosphatase and tensin homolog; RB1, retinoblastoma transcriptional
corepressor 1; SMARCA1, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 1; SMARCAS5, SWI/SNF-related, matrix-associated,

actin-dependent regulator of chromatin, subfamily A, member 5; SWI/SNF, Switch/Sucrose Non-Fermentable Complex; TSGs, tumor suppressor genes.

By modulating these oncogenic miRNAs, circFBXW7 presents a
novel strategy for mitigating glioma progression. Levels of circu-
lating circFBXW7 have been recognized as potential biomarkers
for monitoring glioma progression and treatment effectiveness,
with early studies suggesting that these circRNAs could be uti-
lized alongside imaging methods to track changes in tumors.!5%155

Despite the challenges faced by miRNA-based treatments like
MRX34 due to immune toxicity and delivery issues, ongoing stud-
ies underscore the importance of ncRNAs in the biology of GBM.
Recent human studies indicate that integrating miRNA therapies
with immune checkpoint inhibitors may enhance treatment out-
comes. For instance, current clinical trials are exploring the ef-
fects of combining anti-PD-1 or anti-PD-L1 therapies with miRNA
treatment, which shows potential in overcoming resistance mech-
anisms in GBM.!5%157 Ag the role of ncRNAs becomes clearer,
precision medicine strategies appear more promising, providing
targeted therapies and non-invasive biomarkers for early detection
and monitoring.!® The integration of ncRNA-targeted treatments
with standard therapies holds considerable potential for improving
the management and prognosis of GBM in the future.

Moreover, ncRNAs are found in extracellular vesicles, includ-
ing exosomes, which circulate in blood and cerebrospinal fluid
(CSF).15%160 This indicates that circulating miRNAs may act as
promising non-invasive biomarkers. Specific miRNA profiles
identified in serum and CSF samples from glioma patients have
been associated with tumor grade, severity, and response to treat-
ment.'61:162 A recent study identified a particular miRNA profile in
CSF that could predict patient prognoses and treatment responses
in GBM.1%3 These results highlight the potential of liquid biopsy
methods for GBM, providing a more convenient and less invasive
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option for monitoring tumor progression and treatment outcomes.

In summary, miRNAs, IncRNAs, and circRNAs are crucial in
the molecular pathology of GBM. Their roles in gene regulation,
tumor development, and responses to therapy make them promis-
ing candidates for both diagnostic and therapeutic applications. Ta-
ble 1 presents a summary of the key epigenetic mechanisms, their
dysregulated components, and the associated pro-tumorigenic ef-
fects observed in glioma.!%*-173 Ongoing research, which includes
more human studies and clinical trials, is essential for improving
delivery methods and fine-tuning these strategies to enhance treat-
ment outcomes in GBM. While this compilation of ncRNAs is not
exhaustive, as it goes beyond the scope of this overview article,
it establishes a strong basis for future research into the roles of
ncRNAs in GBM and other brain tumors. A deeper comprehen-
sion of ncRNAs, their mechanisms of action, interactions within
various molecular pathways, and potential as therapeutic targets is
paving the way for novel tailored treatment approaches. Expand-
ing the catalog of vital ncRNAs implicated in glioma progression
and evaluating their potential clinical relevance may help bridge
the current gap between preclinical discoveries and therapeutic
implementation.

Metabolic-epigenetic feedback loops in gliomas: A central
framework

The central narrative of this section is the increasing awareness
that glioma development is influenced not just by genetic muta-
tions but also by intricate metabolic and epigenetic feedback loops.
These relationships create a dynamic interaction where metabolic
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Table 2. Key metabolite—epigenetic interactions in glioma
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Metabo- . . Mechanism of . .
lite Source/Pathway  Epigenetic target(s) interaction Functional consequences of glioma
a-KG TCA cycle; TETs, Jumonji Cofactor for Encourages the expression of tumor-suppressor genes,
IDH-wild-type demethylases DNA/histone improves differentiation, diminishes stem-like character-
metabolism demethylation istics, and curtails proliferation and aggressiveness!8
2-HG Mutant IDH1/2 TETs, Jumonji Inhibits a-KG— Inhibits differentiation of cells, boosts glioma stemness,
demethylases dependent promotes tumor advancement, heightens resistance to
dioxygenases therapy, and facilitates evasion of the immune system?#2
Acetyl- Glucose/fatty HATs Substrate Triggers oncogenes (such as MYC), promotes
CoA acid metabolism for histone growth, ensures survival during metabolic stress,
acetylation and facilitates metabolic reprogramming?83
SAM One-carbon/ DNMTs, HMTs Methyl donor Inhibits tumor-suppressor genes (such as PTEN,
methionine cycle for DNA/histone CDKN2A/B), enhances cell growth, maintains stem cell-like
methylation properties, and increases resistance to chemotherapy?!8
NAD* Glycolysis, Sirtuin Cofactor for Sustains glioma stem-like cells, enhances survival amid
OXPHOS deacetylation metabolic and oxidative stress, aids energy balance through
oxidative phosphorylation, and plays a role in resistance to
therapy!8>
FAD Fatty acid LSD1 Cofactor for Inhibits tumor differentiation, maintains stem cell charac-
oxidation demethylation teristics, promotes malignancy, and accelerates tumor
growth?86
Lactate Aerobic glycolysis  Histone lactylation Donor for his- Encourages growth, blood vessel formation, survival under
tone lactylation  low oxygen conditions, and evasion of the immune system
within the glioma microenvironment!é’
SCFAs Microbiota HDACs HDAC inhibition  Promotes differentiation, inhibits proliferation, and may
fermentation enhance the sensitivity of glioma cells to treatment*88
BHB Ketogenesis HDACs; histone HDAC inhibition  Improves the survival of glioma in conditions of nutrient
B-hydroxybutyrylation deprivation, promotes stem cell characteristics, and
enables metabolic adaptability*8®
Succinate TCA dysfunction,  TETs, Jumoniji Inhibits a-KG— Encourages glioma characteristics, advances tumor devel-
and & IDH mutations demethylases dependent opment, contributes to therapy resistance, and hinders dif-
Fumarate dioxygenases ferentiation9,1%1

2-HG, 2-hydroxyglutarate; Acetyl-CoA, acetyl coenzyme A; BHB, B-hydroxybutyrate; CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B; DNMTs, DNA methyltransferases; FAD,
flavin adenine dinucleotide; HDACs, histone deacetylases; HMTs, histone methyltransferases; IDH, isocitrate dehydrogenase; LSD1, lysine-specific demethylase 1; NAD*, Nicotina-
mide adenine dinucleotide (oxidized form); OXPHOS, oxidative phosphorylation; PTEN, phosphatase and tensin homolog; SAM, S-adenosylmethionine; SCFAs, short-chain fatty
acids; TCA, tricarboxylic acid; TETs, ten-eleven translocation enzymes; a-KG, a-ketoglutarate.

reprogramming and epigenetic changes reinforce each other, en-
hancing tumor growth and resistance to therapies. This section ex-
amines how gliomas exploit metabolic and epigenetic processes
to bolster their survival, increase aggressiveness, and evade treat-
ment by integrating these mechanisms. The combined effects of
metabolic and epigenetic modifications offer a comprehensive
framework for understanding glioma biology and exploring new
potential therapeutic strategies.

As previously stated, the evolution of conceptual frameworks
in cancer biology, which now includes epigenetic dysregulation
alongside genetic mutations, has enhanced our comprehension
of tumor development. This combined perspective is particular-
ly relevant to gliomas. Although mutations in genes responsible
for histone proteins, DNA- and histone-modifying enzymes, and
chromatin remodelers can initiate tumor formation, abnormal gene
expression can arise independently of these mutations, highlight-
ing the significance of non-genetic elements in advancing glioma
development and progression.

Simultaneously, metabolic reprogramming has been identified
as a hallmark of cancer.!’*175 This reprogramming may arise from

mutations in key metabolic enzymes or from environmental and
dietary influences. Importantly, cancer metabolism and epigenetics
are closely intertwined: metabolites such as acetyl-CoA, S-aden-
osylmethionine, a-ketoglutarate, and nicotinamide adenine dinu-
cleotide serve as essential cofactors for chromatin-modifying en-
zymes, thereby directly linking nutrient availability and metabolic
flux to the regulation of gene expression.!”®!77 This metabolic-epi-
genetic crosstalk creates self-sustaining loops that reinforce onco-
genic transcriptional programs and promote gliomagenesis.!78-180
The relationships between metabolites and epigenetic changes, as
described in Table 2, are crucial in governing tumor development
and resistance to therapy in gliomas.'8!-191 These mechanisms not
only affect gene expression but also influence the TME, facilitat-
ing glioma advancement. Gaining a more profound insight into
this interaction between metabolites and epigenetics provides im-
portant perspectives on potential treatment approaches aimed at
altering both metabolic and epigenetic pathways to enhance treat-
ment outcomes.

The complexity of this interaction is further heightened within
the context of systemic metabolic disorders such as diabetes mel-
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litus. Hyperglycemia, insulin resistance (IR), and chronic inflam-
mation characteristic of diabetes foster a tumor-supportive micro-
environment by enhancing aerobic glycolysis, facilitating anabolic
growth, and disturbing redox balance—processes that collectively
contribute to the epigenetic reprogramming of glioma cells.192-194
Diabetes thus not only drives glioma development at the molecular
level but also influences disease prognosis by altering inter-organ
communication networks.!?5-197

Emerging evidence additionally highlights the critical role
of the brain-heart axis in glioma progression and clinical out-
comes.'?%19 Gliomas located near autonomic regulatory centers
can disrupt cardiovascular homeostasis, increasing the risk of
arrhythmias, cardiac dysfunction, and sudden death.2%0:20! This
neuro-cardiac dysregulation is particularly aggravated in diabetic
individuals, who are already predisposed to cardiovascular com-
plications.??2293 Consequently, the interplay among glioma pro-
gression, metabolic disorders, and brain-heart signaling forms a
multifaceted framework for understanding glioma-related clinical
outcomes.

Hence, in this subsection, we examine the interplay between
metabolic and epigenetic dysregulations in glioma, explore how
diabetes exacerbates glioma development, and underscore the
brain-heart axis as a compelling paradigm influencing mortality.
These interconnected systems highlight the urgent need for inte-
grative approaches in glioma research and treatment. One signifi-
cant comorbidity that accelerates glioma progression is diabetes.
Below, we present an evidence-based analysis of how diabetes
acts as a catalyst for glioma development by altering the supply
of metabolites and signaling within the TME, thereby exacerbat-
ing glioma progression through modulation of key metabolic, im-
mune, vascular, and epigenetic pathways.

Diabetes as a Catalyst for glioma progression: An evidence-
based analysis

Diabetes is characterized by high blood glucose levels caused by
insufficient insulin production, impaired insulin action, IR, or a
combination of these factors.?* This condition contributes to gli-
oma progression through complex biological pathways involving
metabolic, immune, epigenetic, and vascular changes.2520¢ Per-
sistent hyperglycemia supplies excess glucose that fuels glioma
cells, which predominantly rely on aerobic glycolysis, commonly
known as the Warburg effect, for energy. Prolonged high blood
glucose enhances glucose uptake by tumor cells, coinciding with
increased expression of glucose transporters and glycolytic en-
zymes, thereby promoting faster cell growth and improved sur-
vival 207,208

Additionally, elevated insulin levels resulting from IR and in-
creased insulin-like growth factor 1 activate the phosphoinositide
3-kinase/protein kinase B/mammalian target of rapamycin path-
way, a key driver of tumor growth in GBM, further supporting
tumor expansion and resistance to cell death.2%%210 In diabetic
conditions, the immune environment also undergoes significant
changes: glial cells release pro-inflammatory cytokines such as in-
terleukin (IL)-6, which promote angiogenesis and tumor invasion
while suppressing effective anti-tumor immune responses.?!!:212
Moreover, high blood glucose impairs the immune system’s abil-
ity to recognize and eliminate tumor cells, allowing gliomas to
thrive.?13

At the epigenetic level, hyperglycemia fosters the formation of
advanced glycation end-products (AGEs) that modify histone pro-
teins non-enzymatically, disrupting chromatin structure and gene
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regulation.?'*215 These modifications can activate oncogenes or
silence TSGs. Furthermore, AGEs interact with their receptor, the
receptor for advanced glycation endproducts, triggering inflamma-
tory pathways that further promote tumor growth.?1%217 Diabetic
hyperglycemia also elevates vascular endothelial growth factor,
which damages the blood-brain barrier (BBB), increasing its per-
meability.?1821% This compromised barrier allows immune cells
to infiltrate brain tissue and supplies nutrients to support tumor
expansion.?20:221 Tn addition, oxidative stress and inflammation
caused by diabetes exacerbate BBB disruption, thereby facilitating
glioma progression.??2:223

In addition to localized changes within the TME, the brain-heart
axis has emerged as a crucial systemic pathway linking diabetes to
glioma progression and poorer clinical outcomes.?** This axis en-
compasses autonomic nervous system (ANS) regulation, through
which the brain modulates heart rate, thythm, and contractility in
response to emotional, cognitive, and physiological stimuli, as
well as neuroendocrine signaling via the hypothalamic-pituitary-
adrenal (HPA) axis, both vital for maintaining cardiovascular sta-
bility.225-227 In diabetes, these systems are frequently disrupted.
Diabetic autonomic neuropathy, characterized by excessive sym-
pathetic activity and diminished parasympathetic tone, impairs
cerebral blood flow regulation and fosters hypoxic conditions
within the glioma microenvironment.??8-22% This hypoxia stabilizes
hypoxia-inducible factor-1a, which promotes angiogenesis and tu-
mor progression while simultaneously damaging the BBB, facili-
tating tumor invasion and immune cell infiltration.?3%.231

Furthermore, chronic neuroinflammatory responses elevate
pro-inflammatory cytokines such as tumor necrosis factor-alpha
and IL-6, activating tumor-supportive glial cells like microglia and
astrocytes, which further fuel glioma growth.?3? Impaired cardiac
autonomic function in diabetes, reflected by reduced heart rate
variability (HRV), signifies brain-heart axis disruption and is asso-
ciated with worse outcomes in glioma patients.?33-235 A decline in
HRYV indicates reduced parasympathetic anti-inflammatory activ-
ity, which normally restrains tumor-promoting inflammation. Ad-
ditionally, neurohormones secreted by the heart, including brain
natriuretic peptide (BNP) and adrenomedullin, influence tumor
growth, vascular remodeling, and resistance to anti-angiogenic
therapies.?3%237 In diabetes, dysregulated levels of these hormones
can exacerbate vascular abnormalities and increase glioma inva-
siveness.?38:239

At the molecular level, metabolic stress and impaired brain-
heart communication act synergistically to influence glioma epi-
genetics.?40241 Elevated glucose levels and oxidative stress lead to
aberrant DNA methylation and histone modifications that silence
TSGs.?#2243 Moreover, abnormal neurohormonal signaling alters
miRNA profiles and epigenetic regulators, promoting tumor cell
survival and proliferation.?44245 Recognizing the brain-heart axis
as a key systemic mediator of diabetes-induced glioma progres-
sion opens promising therapeutic avenues. Strategies such as va-
gus nerve stimulation, cardiovascular function enhancement, and
targeting neuroinflammation may help improve cerebral perfusion,
preserve BBB integrity, and enhance treatment efficacy in diabetic
glioma patients 246-248

Overall, diabetes-driven metabolic and neurocardiovascular
dysregulation creates a biologically permissive environment that
supports aggressive glioma behavior and worsens prognosis. Ad-
dressing this intricate network of metabolic, epigenetic, and brain-
heart interactions offers novel opportunities to slow glioma pro-
gression in diabetic individuals. Figure 1 illustrates an overview
of the metabolic-epigenetic feedback loops in gliomas, depicting
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BRAIN-HEART AXIS
DYSREGULATION

- Neuroinflammation

- ANS dysregulation
- HPA activation
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| l

Fig. 1. Metabolic—epigenetic feedback loop. This illustration depicts how disruption within the brain—heart connection impacts diabetes as part of a larger
metabolic and epigenetic feedback mechanism. The autonomic signaling imbalance, marked by increased sympathetic activity, reduced vagal tone, and
the stimulation of the hypothalamic—pituitary—adrenal (HPA) axis, elevates stress hormone levels and systemic inflammation, which subsequently reduce
insulin sensitivity, hinder insulin release from the pancreas, and cause fluctuations in blood glucose levels. Additionally, imbalanced metabolites such as
nicotinamide adenine dinucleotide (NAD*), acetyl-CoA, and S-adenosylmethionine (SAM) alter the functions of epigenetic enzymes and metabolic signaling,
further compromising metabolic control. The bidirectional arrow illustrates the cyclical nature of this connection: dysfunction in the brain—heart axis leads
to metabolic chaos and diabetes, while diabetes, which is defined by persistent high blood sugar, oxidative stress, inflammation, and alterations in metabo-
lite levels, further disrupts autonomic regulation and cardiovascular control, creating a self-perpetuating cycle that exacerbates metabolic and epigenetic

dysregulation. ANS, autonomic nervous system.

how tumor-driven metabolic reprogramming and systemic imbal-
ances exacerbate epigenetic dysregulation. This self-reinforcing
cycle contributes to tumor progression and related comorbidities
through disruptions in the brain-heart axis.

Taken together, diabetes-induced metabolic, inflammatory, and
neurocardiovascular alterations create a systemic environment that
accelerates glioma progression and exacerbates its physiological
consequences. The convergence of metabolic stress, epigenetic
instability, and impaired brain-heart communication significantly
heightens the susceptibility of diabetic glioma patients to car-
diovascular complications. This intricate interplay of metabolic
and epigenetic dysregulation provides a foundation for the brain-
heart axis, a pivotal systemic pathway that links these disruptions
to poorer clinical outcomes. As we transition to a discussion of
the brain-heart axis, it becomes evident that this axis influences
glioma progression and contributes to the elevated cardiovascular
morbidity and mortality observed in these patients. A more pro-
found understanding of brain-heart interactions, within the context
of glioma and epigenetics, will elucidate how the neurocardiovas-
cular connection further promotes tumor growth and complicates
treatment outcomes in this patient population, which the following
section intends to address.

Glioma, epigenetics, and the brain-heart axis: A triad in car-
diovascular mortality

Over the past few decades, growing interest in the bidirectional
communication between the brain and the heart has fueled the
emergence of neurocardiology—a field dedicated to understand-
ing the neural mechanisms that govern cardiovascular function and
dysfunction.?*® At the core of this neurocardiac interface are brain
regions such as the anterior cingulate cortex, amygdala, insular
cortex, hypothalamus, parabrachial nucleus, periaqueductal gray,
and medullary centers.?5%25! These areas regulate cardiac activity
via the ANS, engaging both its sympathetic and parasympathetic
branches to integrate cardiovascular control with emotional and
cognitive processes.252:253

A pivotal element in this communication is the HPA axis, which
coordinates the body’s response to stress. Upon activation, the
HPA axis triggers the release of glucocorticoids—such as corti-
sol—that can influence cardiovascular function both directly, by
altering vascular reactivity and myocardial performance, and in-
directly, by disrupting autonomic balance. Chronic HPA axis ac-
tivation, as seen in prolonged psychological stress or neurological
disease, is associated with ANS dysregulation, systemic inflam-
mation, and elevated cardiovascular risk.254 In essence, chronic
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Fig. 2. Mechanistic interplay between diabetes and glioma progression. The diagram depicts the pathways by which diabetes facilitates the advancement
of glioma, organized around a central figure composed of themed modules. In the middle are glioma cells, encircled by four primary diabetes-related distur-
bances: metabolic imbalance, vascular changes, immune system disruption, and epigenetic alterations. Within the metabolic module, elevated blood sugar
levels and increased glucose metabolism enhance glioma’s uptake of glucose and support its metabolic needs. In the vascular module, problems with the
endothelium, heightened expression of vascular endothelial growth factor (VEGF), and increased angiogenesis provide a pro-angiogenic environment that
supports tumor growth. In the immune module, persistent low-level inflammation, activation of microglia, and pro-inflammatory cytokines such as inter-
leukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) produce inflammatory signals that create a supportive environment for tumors. In the epigenetics
module, diabetes-related changes in DNA methylation, histone modifications, and the interplay between metabolic and epigenetic factors come together
to influence gene regulation within glioma cells. The arrows illustrate the suggested mechanistic connections from each module to the central glioma cells,
emphasizing how the metabolic, vascular, immune, and epigenetic disturbances induced by diabetes interact through interconnected and mutually reinforc-

ing mechanisms to enhance glioma progression.

activation of the HPA axis has been consistently linked to auto-
nomic dysregulation, systemic inflammation, and an increased risk
of cardiovascular events. This body of evidence supports the no-
tion that prolonged HPA axis activation contributes significantly to
cardiovascular morbidity and mortality across diverse populations.

On the other hand, pro-inflammatory cytokines such as IL-1f,
IL-6, and tumor necrosis factor-alpha further impair autonomic
regulation, damage endothelial function, promote arrhythmias, and
contribute to cardiac injury. These cytokines also activate the HPA
axis in a feedback loop, creating a self-perpetuating cycle of stress
and heightened cardiac vulnerability.?5525¢ A compelling example
of this interconnectedness is found in GBM, the most aggressive
form of primary brain tumor. Cardiovascular complications, once
thought to stem primarily from local tumor effects, are increas-
ingly recognized as manifestations of widespread CNS influence,
driven by neuroinflammation, disrupted stress responses, and
treatment-induced autonomic imbalance.?57-25

In summary, the brain—heart connection represents a complex,
dynamic network, emerging as a compelling paradigm governed
by neuroendocrine signaling, inflammatory pathways, and stress
regulation. As research continues to illuminate these intricate in-
teractions, neurocardiology is evolving into a vital interdiscipli-
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nary field, offering profound insights into the pathophysiology and
management of multifaceted disorders. As shown in Figure 2, di-
abetes-linked hyperglycemia disrupts the BBB, promotes inflam-
mation and epigenetic changes, and fuels glioma growth through
increased glucose uptake and vascular endothelial growth factor-
driven angiogenesis, while also impairing autonomic regulation
via the brain—heart axis.

Significance of the review

This analysis offers a novel, cohesive model for the complex re-
lationship between diabetes and glioma development, an area that
has otherwise been insufficiently examined in existing research.
Unlike earlier studies that examined metabolic, epigenetic, im-
mune, and neurovascular mechanisms separately, we integrate
these components to show how metabolic disruptions linked to
diabetes can significantly influence glioma behavior. A primary
contribution of this research is to elucidate how hyperglycemia-
induced metabolic dysregulation leads to epigenetic alterations,
specifically via non-enzymatic histone modifications mediated by
AGE and the receptor for advanced glycation endproducts—NF-
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kB signaling pathway, offering new perspectives on how systemic
metabolism disruption affects the molecular factors of tumors. An-
other development is the recognition of the brain—heart axis as an
essential factor influencing glioma aggressiveness in patients with
diabetes, illustrating how diabetic autonomic neuropathy and neu-
rohormonal irregularities, such as varying levels of BNP and adre-
nomedullin, promote compromise of the BBB and increased tumor
invasiveness. This review expands the conceptual framework of
glioma research by demonstrating these integrated systems and
establishes a basis for future translational pathways, including
nanoparticle-enabled epigenetic therapies, focused metabolic in-
terventions, digital neurosurveillance, and multi-omics-based bio-
marker identification. With the convergence of neurocardiology,
epigenetics, and oncology, a more integrated, personalized, and
systems-based strategy for glioma treatment is becoming not just
essential but also increasingly achievable.

Limitations

This review underscores the intricate connection between dia-
betes and the progression of glioma; however, it is important to
acknowledge several limitations. Most conclusions are based on
animal models, and the integration of metabolic, epigenetic, and
neurovascular mechanisms remains largely theoretical due to the
lack of robust clinical data. Genetic mutations, environmental fac-
tors, and prior treatments further complicate this relationship, and
challenges persist in delivering nanoparticle therapies across the
BBB. While GLP-1 receptor agonists show potential therapeutic
promise, their effects on glioma, particularly in diabetic patients,
remain uncertain. Imaging and liquid biopsy technologies offer
promising advancements for early detection and diagnostic guid-
ance, but their development is still in progress, and the impact of
comorbid conditions, such as diabetes, remains poorly understood.
Additionally, epigenetic therapies aimed at reversing metabolic
alterations could introduce adverse effects, adding complexity to
the issue. Ultimately, further clinical research and translatable evi-
dence are essential to refine these strategies and develop effective
therapeutic interventions for patients with metabolic comorbidi-
ties.

Future directions

To advance research and treatment for GBM, a thorough approach
is required that addresses not only the complex nature of the tu-
mor but also overarching issues, such as related metabolic disor-
ders. The key to effectively managing GBM lies in personalized
medicine, which integrates nanotechnology, imaging, liquid bi-
opsy, omics technologies, and digital health to improve detection,
monitoring, and treatment results, especially for patients with co-
morbidities like diabetes that can exacerbate disease progression.
One promising approach is the implementation of nanoparticle-
enhanced epigenetic therapies. While the BBB typically limits
the delivery of medications to the brain, its partial compromise in
GBM creates a unique chance to take advantage of this heightened
permeability. Nanoparticles can be tailored to deliver epigenetic
agents, such as DNA methylation inhibitors, HDAC inhibitors, or
RNA therapies, directly to cancer cells. These nanoparticles can
be modified with ligands targeting receptors unique to tumors or
transport mechanisms that traverse the BBB, and they can be en-
gineered to respond to the TME for precise drug release. Future
studies should focus on creating delivery systems that are safe, ef-
ficient, and precise, reducing systemic toxicity while enhancing
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therapeutic outcomes, particularly for those with metabolic disor-
ders like diabetes, which can influence drug metabolism and im-
mune responses.

Tackling metabolic comorbidities such as diabetes must be a
key component of glioma therapy. The notable impact of elevated
blood glucose and IR on glioma progression underscores the im-
portance of incorporating metabolic management into therapeu-
tic approaches. Upcoming clinical trials should classify patients
based on their metabolic characteristics and explore the applica-
tion of glucose-lowering drugs, insulin-sensitizing compounds,
and personalized nutrition strategies. Significantly, glucagon-like
peptide-1 receptor agonists, already established in metabolic dis-
ease intervention and increasingly recognized for their potential
neuroprotective effects in cognitive decline, may also warrant in-
vestigation in this context.?6%26! These approaches might improve
general metabolic health and could influence tumor behavior via
epigenetic alterations and immune system mechanisms.

Moreover, enhancing the early identification and real-time ob-
servation of tumors using advanced neuroimaging techniques is
another crucial area of emphasis. Cutting-edge imaging methods,
such as diffusion tensor imaging, perfusion magnetic resonance
imaging, magnetic resonance spectroscopy, and positron emission
tomography using molecular probes, can detect subtle alterations
in tumor metabolism, blood flow, and microenvironmental factors
before they become clinically apparent.262:293 [ntegrating these im-
aging techniques with blood-derived biomarkers such as exosomal
circRNAs can significantly enhance early diagnostic accuracy and
facilitate more precise monitoring of treatment responses.?64265
This approach is particularly crucial for diabetic individuals, since
their altered blood flow patterns and inflammatory responses
might complicate or accelerate disease progression. Moreover,
liquid biopsy is emerging as an important, less invasive approach
for monitoring glioma. While analyzing CSF is informative, it is
limited by the invasive nature of lumbar puncture.?%267 Future re-
search should focus on improving blood-based biomarkers, such
as circulating tumor DNA, miRNAs, circRNAs, and protein pan-
els, for accurate detection of gliomas at a molecular level. These
biomarkers offer reliable and readily available methods to track
tumor activity, assess treatment efficacy, and detect early signs of
recurrence or metastasis. Liquid biopsy, when integrated with im-
aging and clinical data, can play a vital role in tailoring personal-
ized treatment approaches, especially for patients with metabolic
imbalances.

Ultimately, digital neuro-surveillance offers an innovative ap-
proach for managing neurological events linked to glioma. Sei-
zures and strokes commonly occur and can be life-threatening for
patients with glioma. Through the use of wearable and implantable
devices that provide continuous electroencephalographic monitor-
ing, measure blood flow, and perform physiological assessments,
immediate detection of impending neurological crises can be at-
tained.2®® Machine learning techniques can analyze complex phys-
iological data to predict seizures or ischemic events before clinical
symptoms appear, enabling prompt interventions.?®® For patients
with glioma, especially those with diabetes or impaired vascular
control, customized digital monitoring systems may greatly im-
prove safety, reduce emergency hospital visits, and enhance over-
all quality of life.?7

Together, these interdisciplinary advancements highlight the
significance of integrating nanotechnology, metabolic control,
state-of-the-art diagnostics, and digital health into a cohesive strat-
egy for glioblastoma treatment. The combination of these tech-
niques provides promise for improving clinical outcomes while
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also reshaping the field of neuro-oncology in relation to personal-
ized and precision medicine.

Conclusions

Gliomas serve as robust models for investigating the complex inter-
play between genetic, epigenetic, and metabolic networks in can-
cer biology. Conventional treatments primarily focus on inducing
cytotoxicity by targeting cellular machinery; however, increasing
evidence suggests that durable cancer control requires strategies
that also address the underlying epigenetic and metabolic repro-
gramming that drive therapeutic resistance. Metabolic—epigenetic
feedback loops are thought to play a central role in glioma pro-
gression and intersect with systemic conditions such as diabetes
and cardiovascular dysfunction, further underscoring the clinical
relevance of these networks. For instance, the brain—heart axis il-
lustrates how gliomas may exert effects beyond the CNS, reinforc-
ing the need for a holistic approach to patient care. Looking ahead,
integrating insights from metabolism, immunity, vascular biology,
and epigenetic regulation will be critical for designing personal-
ized interventions that target multiple vulnerabilities, thereby im-
proving outcomes and quality of life. Ultimately, disrupting inter-
connected metabolic, immune, epigenetic, and vascular networks
represents a key step toward achieving durable or even transforma-
tive therapeutic responses in glioma and associated comorbidities.
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